A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees
نویسندگان
چکیده
We developed a multiscale object-based classification method for detecting diseased trees (Japanese Oak Wilt and Japanese Pine Wilt) in high-resolution multispectral satellite imagery. The proposed method involved (1) a hybrid Intensity-Hue-Saturation (IHS)/Smoothing Filter-based Intensity Modulation (SFIM) pansharpening approach 10 (IHS-SFIM) to obtain more spatially and spectrally accurate image segments; (2) synthetically oversampling the training data of the “Diseased tree” class using the Synthetic Minority Over-sampling Technique (SMOTE); and (3) using a multiscale object-based image classification approach. Using the proposed method, we were able to map diseased trees in the study area with a user’s accuracy of 96.6% and a producer’s accuracy 15 of 92.5%. For comparison, the diseased trees were mapped at a user’s accuracy of 84.0% and a producer’s accuracy of 70.1% when IHS pansharpening was used alone and a single-scale classification approach was implemented without oversampling the “Diseased tree” class.
منابع مشابه
Micro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation
Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...
متن کاملAn Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery
In California, a newly discovered virulent pathogen (Phytophthora ramorum) has killed thousands of trees, including tanoak (Lithocarpus densiflorus), coast live oak (Quercus agrifolia), and black oak (Quercus kelloggii). Mapping the distribution of overstory mortality associated with the pathogen is an important part of disease management. In this study, we developed an object-based approach, i...
متن کاملInvestigation on the Amount of Mortality of Iranian Oak Trees (Quercus brantii Lindi) using Satellite Imagery (Case study: Dashtebarm forests of Fars Province)
In recent years, oak trees in the Zagros forests have suffered a lot of fatalities for unclear reasons. Determining the rate and severity of forest crown density changes is important for the investigation and management of these forests. This research was carried out with the aim of determining the amount of crown cover changes in the forest area of Dashtebarm in Fars province under the influen...
متن کاملSatellite Image Pansharpening Using a Hybrid Approach for Object-Based Image Analysis
Intensity-Hue-Saturation (IHS), Brovey Transform (BT), and Smoothing-FilterBased-Intensity Modulation (SFIM) algorithms were used to pansharpen GeoEye-1 imagery. The pansharpened images were then segmented in Berkeley Image Seg using a wide range of segmentation parameters, and the spatial and spectral accuracy of image segments was measured. We found that pansharpening algorithms that preserve...
متن کاملSegmentation Assisted Object Distinction for Direct Volume Rendering
Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...
متن کامل